3.2422 \(\int (5-x) (2+5 x+3 x^2)^{3/2} \, dx\)

Optimal. Leaf size=103 \[ -\frac{1}{15} \left (3 x^2+5 x+2\right )^{5/2}+\frac{35}{144} (6 x+5) \left (3 x^2+5 x+2\right )^{3/2}-\frac{35 (6 x+5) \sqrt{3 x^2+5 x+2}}{1152}+\frac{35 \tanh ^{-1}\left (\frac{6 x+5}{2 \sqrt{3} \sqrt{3 x^2+5 x+2}}\right )}{2304 \sqrt{3}} \]

[Out]

(-35*(5 + 6*x)*Sqrt[2 + 5*x + 3*x^2])/1152 + (35*(5 + 6*x)*(2 + 5*x + 3*x^2)^(3/2))/144 - (2 + 5*x + 3*x^2)^(5
/2)/15 + (35*ArcTanh[(5 + 6*x)/(2*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])])/(2304*Sqrt[3])

________________________________________________________________________________________

Rubi [A]  time = 0.0288204, antiderivative size = 103, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {640, 612, 621, 206} \[ -\frac{1}{15} \left (3 x^2+5 x+2\right )^{5/2}+\frac{35}{144} (6 x+5) \left (3 x^2+5 x+2\right )^{3/2}-\frac{35 (6 x+5) \sqrt{3 x^2+5 x+2}}{1152}+\frac{35 \tanh ^{-1}\left (\frac{6 x+5}{2 \sqrt{3} \sqrt{3 x^2+5 x+2}}\right )}{2304 \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[(5 - x)*(2 + 5*x + 3*x^2)^(3/2),x]

[Out]

(-35*(5 + 6*x)*Sqrt[2 + 5*x + 3*x^2])/1152 + (35*(5 + 6*x)*(2 + 5*x + 3*x^2)^(3/2))/144 - (2 + 5*x + 3*x^2)^(5
/2)/15 + (35*ArcTanh[(5 + 6*x)/(2*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])])/(2304*Sqrt[3])

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (5-x) \left (2+5 x+3 x^2\right )^{3/2} \, dx &=-\frac{1}{15} \left (2+5 x+3 x^2\right )^{5/2}+\frac{35}{6} \int \left (2+5 x+3 x^2\right )^{3/2} \, dx\\ &=\frac{35}{144} (5+6 x) \left (2+5 x+3 x^2\right )^{3/2}-\frac{1}{15} \left (2+5 x+3 x^2\right )^{5/2}-\frac{35}{96} \int \sqrt{2+5 x+3 x^2} \, dx\\ &=-\frac{35 (5+6 x) \sqrt{2+5 x+3 x^2}}{1152}+\frac{35}{144} (5+6 x) \left (2+5 x+3 x^2\right )^{3/2}-\frac{1}{15} \left (2+5 x+3 x^2\right )^{5/2}+\frac{35 \int \frac{1}{\sqrt{2+5 x+3 x^2}} \, dx}{2304}\\ &=-\frac{35 (5+6 x) \sqrt{2+5 x+3 x^2}}{1152}+\frac{35}{144} (5+6 x) \left (2+5 x+3 x^2\right )^{3/2}-\frac{1}{15} \left (2+5 x+3 x^2\right )^{5/2}+\frac{35 \operatorname{Subst}\left (\int \frac{1}{12-x^2} \, dx,x,\frac{5+6 x}{\sqrt{2+5 x+3 x^2}}\right )}{1152}\\ &=-\frac{35 (5+6 x) \sqrt{2+5 x+3 x^2}}{1152}+\frac{35}{144} (5+6 x) \left (2+5 x+3 x^2\right )^{3/2}-\frac{1}{15} \left (2+5 x+3 x^2\right )^{5/2}+\frac{35 \tanh ^{-1}\left (\frac{5+6 x}{2 \sqrt{3} \sqrt{2+5 x+3 x^2}}\right )}{2304 \sqrt{3}}\\ \end{align*}

Mathematica [A]  time = 0.0611855, size = 72, normalized size = 0.7 \[ \frac{175 \sqrt{3} \tanh ^{-1}\left (\frac{6 x+5}{2 \sqrt{9 x^2+15 x+6}}\right )-6 \sqrt{3 x^2+5 x+2} \left (3456 x^4-13680 x^3-48792 x^2-43070 x-11589\right )}{34560} \]

Antiderivative was successfully verified.

[In]

Integrate[(5 - x)*(2 + 5*x + 3*x^2)^(3/2),x]

[Out]

(-6*Sqrt[2 + 5*x + 3*x^2]*(-11589 - 43070*x - 48792*x^2 - 13680*x^3 + 3456*x^4) + 175*Sqrt[3]*ArcTanh[(5 + 6*x
)/(2*Sqrt[6 + 15*x + 9*x^2])])/34560

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 83, normalized size = 0.8 \begin{align*}{\frac{175+210\,x}{144} \left ( 3\,{x}^{2}+5\,x+2 \right ) ^{{\frac{3}{2}}}}-{\frac{175+210\,x}{1152}\sqrt{3\,{x}^{2}+5\,x+2}}+{\frac{35\,\sqrt{3}}{6912}\ln \left ({\frac{\sqrt{3}}{3} \left ({\frac{5}{2}}+3\,x \right ) }+\sqrt{3\,{x}^{2}+5\,x+2} \right ) }-{\frac{1}{15} \left ( 3\,{x}^{2}+5\,x+2 \right ) ^{{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)*(3*x^2+5*x+2)^(3/2),x)

[Out]

35/144*(5+6*x)*(3*x^2+5*x+2)^(3/2)-35/1152*(5+6*x)*(3*x^2+5*x+2)^(1/2)+35/6912*ln(1/3*(5/2+3*x)*3^(1/2)+(3*x^2
+5*x+2)^(1/2))*3^(1/2)-1/15*(3*x^2+5*x+2)^(5/2)

________________________________________________________________________________________

Maxima [A]  time = 1.49352, size = 136, normalized size = 1.32 \begin{align*} -\frac{1}{15} \,{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{5}{2}} + \frac{35}{24} \,{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{3}{2}} x + \frac{175}{144} \,{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{3}{2}} - \frac{35}{192} \, \sqrt{3 \, x^{2} + 5 \, x + 2} x + \frac{35}{6912} \, \sqrt{3} \log \left (2 \, \sqrt{3} \sqrt{3 \, x^{2} + 5 \, x + 2} + 6 \, x + 5\right ) - \frac{175}{1152} \, \sqrt{3 \, x^{2} + 5 \, x + 2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(3/2),x, algorithm="maxima")

[Out]

-1/15*(3*x^2 + 5*x + 2)^(5/2) + 35/24*(3*x^2 + 5*x + 2)^(3/2)*x + 175/144*(3*x^2 + 5*x + 2)^(3/2) - 35/192*sqr
t(3*x^2 + 5*x + 2)*x + 35/6912*sqrt(3)*log(2*sqrt(3)*sqrt(3*x^2 + 5*x + 2) + 6*x + 5) - 175/1152*sqrt(3*x^2 +
5*x + 2)

________________________________________________________________________________________

Fricas [A]  time = 1.34983, size = 232, normalized size = 2.25 \begin{align*} -\frac{1}{5760} \,{\left (3456 \, x^{4} - 13680 \, x^{3} - 48792 \, x^{2} - 43070 \, x - 11589\right )} \sqrt{3 \, x^{2} + 5 \, x + 2} + \frac{35}{13824} \, \sqrt{3} \log \left (4 \, \sqrt{3} \sqrt{3 \, x^{2} + 5 \, x + 2}{\left (6 \, x + 5\right )} + 72 \, x^{2} + 120 \, x + 49\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(3/2),x, algorithm="fricas")

[Out]

-1/5760*(3456*x^4 - 13680*x^3 - 48792*x^2 - 43070*x - 11589)*sqrt(3*x^2 + 5*x + 2) + 35/13824*sqrt(3)*log(4*sq
rt(3)*sqrt(3*x^2 + 5*x + 2)*(6*x + 5) + 72*x^2 + 120*x + 49)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int - 23 x \sqrt{3 x^{2} + 5 x + 2}\, dx - \int - 10 x^{2} \sqrt{3 x^{2} + 5 x + 2}\, dx - \int 3 x^{3} \sqrt{3 x^{2} + 5 x + 2}\, dx - \int - 10 \sqrt{3 x^{2} + 5 x + 2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x**2+5*x+2)**(3/2),x)

[Out]

-Integral(-23*x*sqrt(3*x**2 + 5*x + 2), x) - Integral(-10*x**2*sqrt(3*x**2 + 5*x + 2), x) - Integral(3*x**3*sq
rt(3*x**2 + 5*x + 2), x) - Integral(-10*sqrt(3*x**2 + 5*x + 2), x)

________________________________________________________________________________________

Giac [A]  time = 1.13778, size = 93, normalized size = 0.9 \begin{align*} -\frac{1}{5760} \,{\left (2 \,{\left (12 \,{\left (6 \,{\left (24 \, x - 95\right )} x - 2033\right )} x - 21535\right )} x - 11589\right )} \sqrt{3 \, x^{2} + 5 \, x + 2} - \frac{35}{6912} \, \sqrt{3} \log \left ({\left | -2 \, \sqrt{3}{\left (\sqrt{3} x - \sqrt{3 \, x^{2} + 5 \, x + 2}\right )} - 5 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(3/2),x, algorithm="giac")

[Out]

-1/5760*(2*(12*(6*(24*x - 95)*x - 2033)*x - 21535)*x - 11589)*sqrt(3*x^2 + 5*x + 2) - 35/6912*sqrt(3)*log(abs(
-2*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2)) - 5))